Background: 12-lipoxygenase (12-LOX) is an enzyme abundant in platelets which can contribute to the platelet storage lesion by oxidizing polyunsaturated fatty acids (PUFAs) released from phospholipid membranes. We and others have shown that the PUFA arachidonic acid (AA) and its lipid oxidation products, such as 12-hydroxyeicosatetraenoic acid (12-HETE), accumulate during storage and have inhibitory effects on platelet recovery, survival, and function. However, several PUFAs are substrates for 12-LOX, and their resulting oxylipins may have different effects. We used targeted metabolomics to quantify PUFAs and oxylipins and platelet function assays to characterize function of fresh and stored wild-type (WT) and 12-LOX -/- platelets.

Methods: Blood from WT and 12-LOX -/- mice was collected by retro-orbital bleeding. Platelet-rich plasma (PRP) was generated from whole blood. After fresh samples were aliquoted, the remaining PRP was separated in two groups. One group was stored at room temperature with agitation (RT) for 24 hours, and the other for 48 hours. Metabolites were extracted from samples and quantified by targeted metabolomics as described previously. We assessed platelet function by αIIbβ3 integrin activation by flow cytometry. In vivo recovery of function was measured by transfusing stored platelets into UBiC-GFP mice and stimulating platelets with agonists, followed by gating for transfused (GFP-negative) platelets by flow cytometry. For recovery and survival, we traced biotinylated fresh, 24h, or 48h-stored platelets after transfusion in vivo.

Results: We quantified metabolites present in platelets by targeted metabolomics to monitor their changes in concentration over storage time. Among the 10 PUFAs and 28 related oxylipins we analyzed, 15 of 38 analytes showed a significant difference in PRP from WT and 12-LOX-/- mouse samples. The major metabolites of 12-LOX include 12-HETE, 12-hydroxyeicosapentaenoic acid (12-HEPE) and 14-hydroxydocosahexaenoic acid (14-HDHA), from AA, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). 12-HETE, 12-HEPE, and 14-HDHA were only detected at <8 nmol/L levels in fresh PRP from 12-LOX -/- mice compared to 668 ± 409nM, 149 ± 85nM, and 295 ± 154nM from WT mice, respectively. After 24 hours of storage at RT, 12-HETE, 12-HEPE, and 14-HDHA dramatically increased to 29.0±4.2µM, 3.7±1.1µM, and 6.3±0.8µM in PRP from WT mice, respectively. As expected, these same metabolites remained at low nmol/L levels in 12-LOX-/- samples during storage accompanied by a significant increase of their precursors AA, EPA, and DHA due to lack of 12-LOX activity. Interestingly, there was also a significant reduction in 15-HETE, 17-HDHA, and 13-hydroxyoctadecadienoic acid (13-HODE) in the 12-LOX -/- mice compared to the WT mice, which are primarily produced by the 15-LOX enzyme. Additionally, we observed a significant decrease of metabolites mediated via the cyclooxygenase (COX) pathway in PRP from 12-LOX-/- mice, including prostaglandin E2 (PGE2), PGD2, thromboxane B2, and 12-hydroxyheptadecatrienoic acid (12-HHTrE). Function-wise, fresh 12-LOX -/- platelets were less responsive to agonists compared to WT platelets. Surprisingly, after transfusion of fresh 12-LOX -/- platelets, we found comparable αIIbβ3-integrin activation results after 1, 4, and 24h of circulation time. In contrast, 24h and 48h of storage of 12-LOX -/- platelets led to significantly lower pre-activation at baseline and a significantly lower activation response than WT platelets after 1h and 4h of circulation time. No significant differences were observed after 24h of circulation time. We observed a clear trend for longer survival after 24 and 48h of storage.

Conclusions: We found many metabolic changes between 12-LOX -/- and WT mice during storage. While the 12-LOX -/- mouse model highlights the primary metabolic differences that occur without 12-LOX activity, other changes, such as differences in COX or additional LOX isoform activity, may attenuate oxylipin production. Functionally, we observed less pre-activation and better survival in functional studies, but this may be due to a combined effect of each of these individual metabolites. Future studies will have to determine the roles of individual oxylipins.

Disclosures

Stolla:Cerus: Research Funding.

Sign in via your Institution